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It is well known that bacteria, such as Escherichia coli, propel themselves in aqueous media by
rotating helically shaped flagella. While a number of theoretical approaches have been proposed
to model the detailed swimming motion, a rigorous comparison with experimental data is lacking
due to the difficulty in simultaneously visualizing the motion of the head and the flagella along
with the resulting trajectory. To this end, we have built a macroscopic working model of a bac-
terium and visualized its detailed motion in high viscosity liquid. We show that small asymmetry
in the mass distribution in the head can lead to helical trajectories with large pitch and radius,
which are reminiscent of the wiggling trajectories observed for swimming bacteria. The detailed
motion agrees well with the predictions from slender body theory that accounts for the asym-
metric mass distribution in the head. Our study shows that the trajectory consists of two helical
trajectories of different length scales - a large one caused by the asymmetric mass distribution
and set by the head rotation rate and a smaller one caused by the rotating flagellum and set by its
rotation rate. We discuss implications of these results on the wiggling trajectories of swimming
bacteria.
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1. Introduction
Bacteria such as Escherichia coli or Bacillus subtilis, propel themselves in suspending liquids

using slender filamentous projections known as flagella, which are powered by rotating motors at
their base. When all the motors turn in the same direction, the flagella bundle together to form a
rotating helix, which propels the cell forward. This swimming motion is called a run (Berg 2004).
When one or more motors reverse their direction, the corresponding flagella come apart from the
bundle resulting in an abrupt change in the direction of the cell with resulting motion termed as
a tumble. The motion of a flagellated bacterium is a series of runs interspersed by tumbles (Berg
2004).

Given the small physical dimension of the bacterium ∼ O(1 µm) and their swimming speeds
of O(10 µm/s) in aqueous environments, the fluid flow generated by the moving bacterium is
governed by low Reynolds number hydrodynamics, Re . O(10−4). The propulsion generated by
rotating helical flagella originates from the difference in the drag experienced by a slender body
when moved along its axis compared to its broadside, latter being approximately twice compared
to when the rod is moved along its axis. Thus, when a section of the slender helical flagellum
rotates such that the velocity vector of the segment has components along both the segment and
its perpendicular direction, the force vector is not aligned along the velocity vector and has a

† Department of Chemical and Biological Engineering, Princeton University, Princeton NJ, USA
‡ Email address for correspondence: mahesh@che.iitb.ac.in



2 Akanksha Thawani and Mahesh S. Tirumkudulu

non-zero component along the axis of the helix (Chwang & Wu 1971). The sum of this force
component from all segments of the helix gives the total thrust exerted by the rotating flagella.
Since the cell including its head and flagella experience no external force, the thrust is balanced
by the drag on the moving head under steady motion. Similarly, the torque generated due to the
rapid rotation of flagella (∼ 100 Hz for E. coli) is balanced by a counter-rotating head (∼ 10 Hz
for E. coli) so that the net torque on the cell is zero.

Keller & Rubinow (1976) (henceforth referred to as KR) were the first to investigate theoreti-
cally the detailed motion of a bacterium and relate it to the geometry and dynamics of the rotating
flagellum. They adopted the resistive-force theory (RFT) of Gray & Hancock (1955), where the
force and torque on a flagellum is obtained by integrating the local forces on each infinitesimal
segment. After adding the drag force and torque on the spherical head and applying the force-free
and torque-free conditions, the resulting velocity components yield a helical trajectory. However,
the RFT theory ignores the hydrodynamic interactions between different parts of the flagella and
also between the head and the flagella, leading to significant errors when the wavenumber (or
turns) of the helical flagellum is large (Rodenborn et al. 2013). A more accurate approach of
slender-body theory pioneered by Lighthill (1976), Hancock (1953), Johnson (1980) and Higdon
(1979) involves distributing stokeslets and dipoles of suitable strength along the centerline of the
flagellum so as to match the boundary condition on the flagellum surface. A known velocity dis-
tribution along the flagellum, yields the strength of stokeslets and dipoles, and therefore the total
force and torque exerted by the rotating flagellum. A third approach is to numerically solve the
full three-dimensional Stokes equation using the boundary element method (Phan-Thien et al.
1980), the regularized flow singularity method (Cortez 2001; Cortez et al. 2005), or the im-
mersed boundary method (Dillon et al. 2001). For details on the various approaches, the reader
is referred to reviews on bacterial hydrodynamics by Lauga & Powers (2009) and Lauga (2016).

While a number of theoretical studies have focused on determining the details of bacterial
motion, a rigorous comparison with the experimental data has been largely missing.

::
It

::
is

::::
only

::::::
recently

::::
that

::
a
:::::
study

:::::::::
measured

::::::
thrust,

::::
drag

::::
and

::::::
torque

:::
for

:
a
::::::::

rotating
:::::::
(model)

::::::::
flagellum

::::
and

::::::::
compared

:::
the

::::::::::::
measurements

::::
with

:::::::::
theoretical

:::::::::
predictions (Rodenborn et al. 2013)

:::
but

:
it
::::
still

::::
does

:::
not

:::
give

:::::::
insight

:::
into

:::
the

::::::::
resulting

:::::::::
swimming

::::::::
trajectory

::
of

::
a
:::::::::
bacterium. The main reason for the

limited experiments on bacterial motion lies with the constraints of the visualization technique.
The head and the flagella are typically labeled with a fluorescent dye and visualized with a high
numerical aperture objective lens. Consequently, even a small out-of-plane motion of cells ren-
ders them out of focus within a short time due to which long-time reliable data on trajectories
with simultaneous visualization of head and flagella becomes difficult. In addition, variations in
the geometry and dimensions of flagella and cell body in a population lead to variations in head
and flagellar rotation rates (Darnton et al. 2007), as well as the resulting trajectories.

The aforementioned aspects are highlighted in the
:
A
:
recent study by Hyon et al. (2012) who

measured
::::::::
visualized

:
trajectories of Bacillus subtilis and found large variation in the pitch and

the radius of these trajectories. The experiments did not measure the rotation speeds of the head
and the tail . The

::::
head

:::
and

::::
tail

:::
but

:::
the trajectories were compared with predictions obtained via

simulations that employed the method of regularized stokeslets using boundary element anal-
ysis. Their model considered a single flagellum

:::
both

::
a
:::::
single

:::::::
bundle

:::
and

::::::::
multiple

::::::
bundles

:::
of

::::::
flagella

:
attached to an ellipsoidal head, either aligned along the major axis of the ellipsoid

or off-axis at some fixed angles. The predicted radius and pitch of the trajectory were much
smaller than the measurements when the helical flagellum was aligned along the major axis of
the head. Further, the model under-predicts the measured pitch even when an

::::
They

:::::
found

:::::
good

:::::
match

::::
with

:::::
their

::::::::::::
measurements

:::
for

:::
the

::::
case

::
of

::::::::
multiple

:::::::
flagella,

:::::::
rotating off-axis flagellum is

considered. They attribute the differences between the prediction and the measurements mainly
to the presence of multiple off-axis flagellabundles in the head, which when accounted for led to
wiggling trajectories closer to the measurements. While the presence of multiple off-axis flagella
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reported previously in an experimental study was the motivation for the extensive calculations, a

::::
with

:::
the

::::
head.

:::::::::
However,

::
an

:::::::
absence

::
of

:
simultaneous visualization of the multiple off-axis flag-

ella, head and the resulting wiggle would be needed for
::::::::
swimming

:::::::::
trajectory

::::::::
prevented a detailed

comparison of the predictions with the experiments
::::
with

:::::
model

::::::::::
predictions.

To overcome the aforementioned drawbacks, we built a macroscopic model of a bacterium,
henceforth referred to as a bot constituting a spherical head and a single helical flagellum whose
motion was visualized accurately in a tank containing high viscosity liquid. While the current
study was motivated by that of Hyon et al. (2012) to better understand the wiggling trajectories in
real bacteria, the experiments were inspired by GI Taylor’s illustration of bacterial motion using
a mechanized bot swimming in a very viscous liquid (Taylor 1967) and his study on motion of
a macroscopic model of spermatozoan (Taylor 1952). Our experiments involved visualization
of not only the detailed dynamics of the flagellum and the head but also the entire trajectory
of the bot. Thus the goal of our experiments was to measure simultaneously the trajectory, and
the rotation rate of the helix (flagellum) and the head and compare the measurements with the
predictions of the slender-body theory. The measurements should not only reveal

:::::
reveal

:::
not

::::
only

intricacies of bacterial swimming such as the
:::::::
possible

:::::
cause

:::
for wiggling trajectories observed

in real bacteria but also act as benchmarks for future theoretical studies, especially those for
collective motion of bacteria, wherein error estimates for the various theoretical models of a
single swimmer can be ascertained.

2. Material and Methods
2.1. Experimental set-up

The experiments were performed in a 70L-tank (36.5 cm x 34 cm x 50 cm high) filled up to a
height of about 43.5 cm with silicone oil (Wacker®) of dynamic viscosity of 0.97 Pa-s (25◦C).
The tank dimensions and the area of interest for the run were chosen such that the head is away
from the side walls by about 15 cm, and the free surface (top) by about 20 cm. The viscosity
measurements were performed with a cone and plate rheometer (Anton Paar MCR-301) and
found to be in close agreement with the estimates provided by the manufacturer. The fluid was
mixed thoroughly to avoid temperature variation or density stratification in the tank, and the
experiments were started after ensuring that the convection currents and bubbles generated during
mixing were eliminated.

A hollow, plastic sphere of external diameter 37 mm and shell thickness of 2 mm was used to
construct the head of the model bacterium (Fig. 1). The head contained a small motor (M1N10FB95G
of 5 V rated voltage, a no-load current of 20 mA, and starting torque of 1.8 mN.m), a pair of bat-
teries (3 V, CR2450 or 3 V, CR2032) and wire terminals to connect the motor to the battery. The
size and specification of the batteries were selected to overcome the volume limitations inside
the spherical head, net-weight restrictions of the model

:::
for

:
a
::::::::
neutrally

:::::::
buoyant

:::
bot

:
and battery

capacity required to sustain high torque in the viscous fluid. The plastic sphere was cut into two
halves and the motor along with the batteries were fit into one half with the rotor protruding out
of a small hole at the center of the hemisphere surface. Double-sided tape was used to stick the
motor to both the hemisphere and the batteries. The wires connecting the motor and the battery
were passed through a small hole at the center of the other hemisphere’s surface but the connec-
tions were left open so that the motor could be switched on and off after the hemispheres were
sealed. The length of the protruding wires was kept to a minimum (about 4-5 mm) to minimize
its drag and therefore its influence on the overall trajectory.

In order to balance the weight of the model bacterium, metallic and plastic rings were glued
around the stator, such that the weight is symmetrically distributed about the axis of the stator.
Despite taking extreme care, small asymmetry in the weight distribution led to a small tilt of the
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Figure 1. (A) A schematic of the model bacterium used in the experiments. (B) Dimensions of the tank
and the approximate location of the bot during a run.

bot, about 8◦ with respect to the vertical. As will be discussed later, the small tilt contributes
significantly to the overall motion of the bot. The small gap between the protruding rotor and the
thin wall of the hemisphere was closed with thick grease to prevent silicone oil from entering
the spherical head. The rotor was connected to a metallic helix (flagellum) through a connecting
plastic tube, similar to the bacterial hook. The model flagellum was constructed from an initially
straight copper wire and the wire was wrapped around brass mandrels with helical grooves to
obtain the helix. Note that the flagellum (made of metal) is heavier than the surrounding fluid,
and thus the head was made lighter in order for the entire body to be of the same density as the
fluid. Consequently, the bot was stable in the vertical position while swimming from the bottom
of the tank to the top (see Fig. 1(B)). The bot was released at the bottom of the tank and at equal
distance from the left and right side walls and the trajectory was recorded only when the bot was
in the middle of the tank, using a high speed CCD camera (Pike F-032 CCD; see Movie S1). The
physical parameters of the bot and the surrounding fluid are listed in Table 1.

2.2. Trajectories

Image analysis revealed the trajectory of the center of the spherical head and the rotation rate
of the head and the helix. The position of the head was obtained using a MATLAB code that
identifies the center of the sphere in each frame. The rotation rate of the head and the helix,
however, were obtained manually using reference points marked on the bot.

The images of the bot at three different time instants are presented in Fig. 2(A). The bot pre-
cessed about the vertical coordinate (Y axis) due to the tilt. The horizontal dashed line connecting
the images highlights the translation of the bot as a function of time. The coordinates of a typ-
ical trajectory are presented in Fig. 2(B). The slight tilt of the bot with the vertical leads to a
considerable wobble in the trajectory. The camera, however, can only capture the projection of
the motion on to the XY plane (gravity acts in the negative Y direction). There is an initial tran-
sient when the bot is released at the bottom of the tank but the trajectory reaches a steady state
within a short time. We observed a large wobble with pitch and diameter of 8.8 mm and 2.8
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Length of helix L 37.5 mm
Number of turns Nλ 6

Wavenumber k = 2π/λ = 2πNλ/L 1 mm−1

Radius of helix R 2.7 mm
Radius of helix wire a 0.62 mm

Radius of head b 18.4 mm
Length of hook h 20.0 mm

Buoyancy-balanced weight difference δm 0.9 g
between the head and the flagellum

Tilt with gravity α 7.6◦
Rotation rate of helix ωwave 37.7 rad/s

Density of fluid ρ 960 kg/m3

Viscosity of fluid µ 0.97 Pa-s

Table 1. Parameters for the experimental bot used for predicting the trajectory.

Figure 2. (A) Snapshots of the swimming bot at three different times. The symbol “x” in red marks the
center of the head while the horizontal dashed line highlights the displacement of the bot. Scale bar, 28.2
mm. (B) Trajectory extracted from image analysis. Note that there is an initial transient at the start of the
experiment during which both the pitch and the radius of the bot varies. The pitch and radius of the helical
trajectory is found to be 8.8 mm and 1.4 mm, respectively. See Movie S1. See also supplementary section
VI.

mm, respectively, where the wobble dimensions are of the same order of magnitude as the bot it-
self. Interestingly, this has also been observed in the trajectory measurements of Bacillus subtilis
Hyon et al. (2012). The large wobble was reproducible across different, independent experimen-
tal runs using the same bot as well as multiple constructions of the bot with similar dimensions
(Section VI, Supplementary Materials).

The wobble is assumed to be similar in the Z direction as in X, but the position would appear
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sinusoidally shifted in time by half a wavelength due to the difference in the projections of the
three-dimensional trajectory on the YZ and the YX planes. Further, the velocity component along
Y is found to decrease gradually with time, due to the slow discharge of the batteries driving
the model bacterium. Thus, the apparent helical rotation rate of the flagellum, along with head
counter-rotation rate, is observed to decrease with time too (see discussion pertaining to Fig. 3).

2.3. Benchmark studies

In the experiment discussed above, the Reynolds number calculated with respect to the flagel-
lar rotation, Re f ≡ ρωwaveR2/µ is of O(0.1) and that with respect to head translation is Reh ≡

ρUb/µ ∼ O(0.01). Here, ρ and µ are the density and the viscosity of the liquid, R is the radius
of the helix, ωwave is the rotation rate of the helix, b is the radius of the spherical head, and U is
the characteristic translation velocity of the bot. In order to test the applicability of low Reynolds
number hydrodynamics in the observed range of Reynolds numbers, we performed two bench-
mark tests. The first consisted of a rotating helix which was soldered to the shaft of a motor
and the force generated was measured using a weighing scale. An externally-powered motor was
used to drive the helical flagellum at varying rotation rate and the generated thrust was found
to be in agreement with predictions from the slender body theory, similar to the previous study
of Rodenborn et al. (2013). The second test consisted of sedimentation of a sphere of dimen-
sions identical to the spherical head wherein the weight of the sphere was adjusted such that the
buoyancy resulted in a velocity similar to the translational velocity of the bot. The measurements
were then compared with the prediction obtained using the Stokes equation. The propulsive force
observed in the first test showed a maximum of 15% error compared to theoretical values, which
is of the same magnitude as the errors observed by Rodenborn et al. (2013), and the sedimenta-
tion velocities were found to closely agree with the theoretical predictions of Stokes flow (within
7%). The results and analysis are included in sections II and III of Supplementary Materials.

2.4. Calculations using Slender-body theory

The calculation of the velocity and the angular rotation of the head and the helix follow the
procedure detailed by Lighthill (1976) and Higdon (1979). We built up on the MATLAB code
generously shared by Rodenborn et al. (2013). The head of the bot is a sphere while the flagellum
is a rigid right-handed helix rotating with helical wave velocity ωwave radians per second relative
to the head (Fig. 3(A)). The coordinate frame has its origin at the head center and is henceforth
referred to as the body frame. The rotation in clockwise direction as seen from behind the flagel-
lum, i.e. ωwave < 0 in our coordinate system, results in propulsion in the negative z-direction. To
balance the torque, the body counter-rotates at ΩH rad/s, leading to an apparent rotation of the
helix in the local body frame at Ω rad/s. Note that ΩH = Ω − (0, 0, ωwave).

The force distribution on the surrounding fluid due to the motile bacterium is determined
by distributing stokeslets and doublets on the flagellum to satisfy the boundary conditions in
velocity. The propelling flagellum is approximated by a slender body with each point being
represented as a combination of a stokeslet and a doublet. By imposing appropriate velocity
boundary conditions, the distribution of the stokeslets and doublets can be determined and thus
the force exerted by the body on the fluid. Here, we follow the approximation suggested by
Lighthill (1976) along with certain corrections due to the presence of the spherical head by
Higdon (1979). We present only a brief description of the method and the reader is referred to
Higdon (1979) and Rodenborn et al. (2013) for details. Lighthill (1976) showed that if stokeslets
of magnitude f(s) per unit length are placed along the length of the helix, which is equal to the
force per unit length exerted by the helix on the surrounding fluid, then doublets of strength
−a2f⊥(s)

4µ per unit length are required to satisfy the no-slip boundary condition on the surface of the
flagellum. Here, s is the arc length along the centerline of the flagellum from some fixed point on
the centerline and f⊥(s) is the projection of f(s) perpendicular to the centerline of the flagellum.
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The local velocity of a segment of the flagellum located at s0 is related to the force distribution
along the flagella,

us(s0) =
f⊥(s0)
4πµ

+

∫
|r0(s,s0)|>δ

r2
0f(s) + (f(s).r0)r0

8πµr3
0

ds, (2.1)

where, r0 is the position vector of the point s0 on the centerline of the flagellum relative to the
point s, δ = a

√
e/2 = 0.82a is the natural cutoff length and e is the base of natural logarithm. The

flagellum is attached to the head at the point (0, 0, b) such that the position of any point beyond
the straight hook of length h on the centerline of the flagellum (z > b + h; Fig. 3A) is given by,

r = (R cos(k(z − b − h)),R sin(k(z − b − h)), z) .

Note that the stokeslets in (2.1) represent the velocity field generated by point forces in an infinite
medium but for the present case the flow field does not satisfy the no-slip condition on the surface
of the head. Higdon (1979) corrected for this by replacing the stokeslet with Green’s function that
consisted of the stokeslet plus a collection of image singularities that ensure the no-slip boundary
condition on the head’s surface. In the present calculation, this correction is ignored leading to a
small error (discussed later).

In addition to the disturbance flow generated by the moving flagellum, the moving head also
contributes to the velocity at the location of the flagellum, which is given by

uH(r) =
3
4

b
[(
I

r
+

rr
r3

)
−

b2

3

(
−
I

r3 +
3rr
r5

)]
.U +

b3

r3 r ×ΩH, (2.2)

where r is the position vector of a segment of the flagellum with respect to the center of the head.
The first term in square bracket represents the contribution from the stokeslet and dipole due to
translation of the spherical head, and the last term represents the contribution of the rotlet due to
the rotation of the head. Thus the velocity of the centerline of a segment is given by the sum of
the velocity contribution from the moving head and that from the fluid flow generated by rest of
the flagellum,

uf(r) = us(r) + uH(r) = U + Ω × r, (2.3)

where uf(r) is the velocity of the particular segment located at r, U is the translational velocity
of the body and Ω is the apparent rotation rate of the flagellum in the body frame.

Equation (2.1-2.3) can be used to obtain the force distribution on the flagellum for a fixed
velocity of the flagellum. A short summary of the discretization procedure and the numerical
implementation is presented here and the reader is referred to Rodenborn et al. (2013) for details.
The grid size was chosen to be larger than the cutoff length and the discretized equation (2.1),
say for the ith node (i = 1...M), was divided into two parts. The first is an integral from δ to the
grid size while the other is the velocity contribution of the stokeslets located on other nodes. The
discretized equation (2.1-2.3) is solved in the local coordinates of each discretized point for the
local forces f′i . The force at each discretized node is then converted back into the body frame via
a coordinate transformation (f′i → fi) as suggested by Rodenborn et al. (2013). The discretized
form of equation (2.1-2.3) in the body frame becomes,


u1
u2
...

uM

 = P


f1
f2
...

fM

 +


q1
q2
...

qM


where qi∀i ∈ {1,M} depend on of the geometry of the flagellum and input value of ωwave. The
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torque contribution of each stokeslet acting on the flagellum is given by, ti = r × fi. The dis-
turbance flow caused by a stokeslet fi on the flagellum also exerts a force on the spherical head
(Higdon 1979), so that the total force contribution of the stokeslets on the bacterium (head plus
flagellum) is given by,

fi(1 + CT ) +
(fi · r)r

r2 (CR −CT ) (2.4)

where,

CR = −
3
2

b
r

+
1
2

b3

r3 , and CT = −
3
4

b
r
−

1
4

b3

r3 .

Similarly, the total torque contribution of a stokeslet including that due to the disturbance flow
caused at the center of the head is given by,

r × fi

(
1 −

b3

r3

)
. (2.5)

Using the discretized form of (2.1) and the total force and the torque contribution of each
stokeslet, we obtain a propulsion matrix Gh for the flagellum,(

Fh

L−1Th

)
= Gh

(
u

LΩ

)
+ Q (2.6)

where Fh and Th are, respectively, the net propulsion force and net torque exerted by the flagel-
lum. Q is obtained by propagating the constants qi as described above.

Each column of Gh was determined by keeping the corresponding element of u or LΩ as unity
and the rest as null. For example, for the calculation of the third column of the propulsion matrix,
uz = 1 i.e., ui=(0,0,1) ∀ i ∈ {1,M}. Each fi was calculated as described above. The force on
each element was then used to determine the discretized torques ti. The forces and torques are
summed up to provide the elements of the propulsion matrix.

So far, the entire calculation is based on the coordinate system local to the body (origin at
the center of the head; Fig. 3(A)). While the above calculation will be correct for every instant
of time for the flagellum in the local body frame, the position and orientation of the flagellum
and head would change with time due to translation and rotation of the entire body, as observed
in the laboratory frame (Fig. 2; see next section for detailed description). The calculations of
this trajectory in the laboratory frame are greatly simplified if the body frame translates with the
center of the head and rotates with the flagellum at every instant of time so that all the equations
derived above are valid at all times in this particular body frame of reference. This is similar to
the body frame adopted by KR, where their origin is placed at the point connecting the head and
the flagellum.

As mentioned previously, the slight asymmetry in the mass distribution inside the head leads
to a small tilt in the bot with respect to the vertical. This implies that although the net force on
the bot is zero at all times, it experiences an external torque whenever the bot is displaced from
its equilibrium tilt position. The external torque due to gravity is given by,

`′(t) × δm g′(t) , (2.7)

where `′(t) is the vector joining the center of mass of the head to the center of mass of the
flagellum, δm is the difference in the mass of the head with that of the fluid displaced by the head,
and g′(t) is the acceleration due to gravity transformed to the body frame (Fig. 3). Therefore,
`′(t) = (−∆ cos(ωwavet),−∆ sin(ωwavet), L/2 + b + h), where ∆ is the distance of the center of mass
of the spherical head from the geometric center.

Adding the total force contribution of the stokeslet to the drag force on the head due to transla-
tion, −6πµbv, gives the net force acting on the bot, which is zero. On the other hand, adding the
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Figure 3. (A) Schematic of the model bacterium in the local body frame for the theoretical analysis. (B)
Model bacterium (in the laboratory frame) showing the small displacement (∆) of the center of mass of the
spherical head. Since the flagellum is heavier than the fluid by an amount δm g and the head is lighter by the
same amount (so that the entire body is neutrally buoyant), the body experiences a force couple (indicated
by the blue arrows) resulting in an equilibrium tilt position with respect to the global coordinates (XYZ).
Here, gravity acts in the negative Y direction. (C) Predicted trajectory for the observed tilt angle of 7.6◦.
The motion of the bot results in a smaller helical motion embedded in a larger helical trajectory, one with
a small pitch and radius, and a second larger helical trajectory (wobble). In the absence of tilt, only the
former is present. (D) Comparison of the predicted trajectory with measurements. (E-F) The measured time
evolution of the position of the center of the head, in X and Y coordinates, is compared with the prediction.

total torque contribution of the stokeslet to the resistive torque of the rotating head, −8πµb3ΩH , is
equal to the external torque due to gravity. Thus the combined force and torque balances become,

(
−Fh

−L−1Th

)
+

(
−6πµbv

−8πµb3L−1ΩH

)
+

(
0

L−1(`′(t) × δmg′(t))

)
= 0

where the expression for Fh and L−1Th are obtained from (2.6). Substituting ΩH = Ω −

(0, 0, ωwave) gives,

− Gh
(

v
LΩ

)
+

(
−6πµbv

−8πµb3L−1Ω

)
= Q +

(
0

−8πµb3L−1(0, 0, ωwave)

)
−

(
0

L−1(`′(t) × δmg′(t))

)
(2.8)

Since the vector Q depends on ωwave and the geometric parameters, the above set of equations
can be solved for v and Ω for a given ωwave and known elements of Gh.

2.5. Trajectory calculation

In order to determine the trajectory of the bot, we consider a cartesian coordinate system at rest in
the laboratory frame, hereby referred to as R = (X,Y,Z) (Fig. 3(B)). This requires transformation
of the position and orientation of the bot from the body frame to the laboratory frame, r → R.
As demonstrated by KR, the transformation from r to R consists of a rotation obtained using a
transformation matrix A−1(t), which is a function of time, and a translation by an amount R0(t),



10 Akanksha Thawani and Mahesh S. Tirumkudulu

the latter being the translation of the center of the head in the laboratory frame. The trajectory of
the path is then given by,

R(t) = R0(t) + A−1(t).r, (2.9)

where the second term on the right gives the position of each point on the flagellum with respect
to the head center in the laboratory frame. The translation of the center of the head is given by,

dR0

dt
= A−1(t).v (2.10)

The rotation matrix from body to global frame,A−1(t) is expressed in terms of the Euler angles
φ(t), θ(t), ψ(t), which in turn are related to Ω = (Ω1,Ω2,Ω3) via the following three differential
equations Goldstein (1980),

φt sin θ sinψ + θt cosψ = Ω1

φt sin θ cosψ − θt sinψ = Ω2

φt cos θ + ψt = Ω3

Thus at any time step t, the position of the bacterium is determined by first solving for v and Ω

from (2.8) in the local body frame, and then determining the position of the head and flagellum
from (2.9) and (2.10) in the laboratory frame. The latter require the Euler angles, which are
determined from the above set of differential equations.

3. Results and Discussion
We compared the predicted dimensionless vertical velocity with the SBT calculations of Hig-

don (1979) as a function of number of turns and the ratio of flagellum radius to the head radius
around the geometric parameters of our bot. Recall that Higdon replaces the expression for the
stokeslet with a Green’s function that consisted of the stokeslet plus a collection of image singu-
larities that ensure the no-slip boundary condition on the head’s surface. Our formulation does
not include this correction. In addition, we neglect the stokeslets on the small hook that connects
the rotor to the helix (Fig. 1A), which were included in the reference calculations from Higdon
SBT. We find that our simulation results in the absence of wobble closely match the reference
measurements with a maximum error of 15% (Section IV, Supplementary Materials).

Fig. 3B shows a schematic of the bot while highlighting the tilt caused by the asymmetric
position of the center of mass of the spherical head. Recall that `′(t) is the distance of the cen-
ter of mass of the head from the center of mass of the helical flagellum. Fig. 3C presents the
predicted trajectory when the bot had an equilibrium tilt of 7.6◦. The trajectory has two helical
paths, one with a small pitch (0.22 mm) and radius (0.01 mm) which is caused by the residual
torque exerted by the forces on the rotating flagella about the center of the head, while the second
is a result of the asymmetric weight distribution coupled to the counter rotation of the head and
has a much larger pitch (8.8 mm) and radius (1.4 mm) - we refer to the latter as the wobble to
distinguish it from the smaller helical trajectory. Note that the plot includes an initial transient
(up to about Y = 5 mm) during which the bot attained a constant vertical orientation about which
the bot precessed while translating upwards. Fig. 3D compares the predicted trajectory with the
measurements with close agreement between the two. The measurements are represented by dots
obtained from each frame, and the spread in the dots indicates the error in determining the center
of the head. In addition to the trajectory, the time evolution of the X and Y coordinates of the
center of the head also agree well with the predictions. It should be noted that the speed reduced
somewhat (due to battery drainage) towards the end of the experiment (Y > 80 mm) leading to
a small discrepancy at the end (Fig. 3(C-F)). The rotation rate of the head and the flagella was
also measured experimentally and compared with the theoretical prediction. During the course
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Figure 4. The figure plots the radius, pitch and the vertical velocity component for (A) varying tilt angles
(α) (B) varying number of helical turns with L and R fixed, and (C) varying number of helical turns with Lc
and θ fixed, and therefore L is also fixed.

of this run, |ΩH,3| was observed to be 0.82 ± 0.16 rad/s, where the standard deviation represents
the gradual decrease in magnitude of ΩH,3 due to battery drainage. If we take the instantaneous
value of |ΩH,3| = 0.75 rad/s measured when |Ω3| ≈ |ωwave| = 37.7 rad/s during the experiment,
it compares closely with the theoretical prediction for |ΩH,3| = 0.84 rad/s for the same value of
ωwave (Table 1). These results show that the slender body theory is able to capture all the salient
features of the flow with close quantitative agreement with the experimental measurements. Fur-
ther, the translation speed with the corrected Green’s function and force elements on the hook but
without the tilt is 15% higher than that predicted by our code for the same conditions. We there-
fore conclude that the absence of the these corrections do not significantly alter the conclusions
of our study.

Next, we explore the influence of tilt angle and number of helical turns (of the flagellum)
on the swimming characteristics of the bot (Fig. 4). To obtain a better physical understanding
of the observed trends, we obtain scaling relations from the resistive-force theory of KR, who
considered a force-free bacterium with a single flagellum connected to a spherical head, and
determined the translational and angular velocities of the head and the flagellum (see appendix).
When the contour length of the flagellum (Lc = L

√
1 + k2R2) is large compared to R and λ and
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k2R2 >> 1, the translation and angular velocities are of the following order of magnitude (α = 0),

v3

c
∼

1[
2 −

(
3b
Lc

)
ln

(
ka
√

e
4π

)] (3.1)

v1

c
,
v2

c
∼

kR2

Lc

1[
1 −

(
8b
Lc

)
ln

(
ka
√

e
4π

)] (3.2)

Ω3

ωwave
∼ 1 (3.3)

ΩH,3

ωwave
∼

R2Lc

4b3

1

ln
(

ka
√

e
4π

) (3.4)

Here, c = ωwave/k and component 3 of the body-fixed coordinate system is aligned along the axis
of the flagellum. The rotating helix results in a helical trajectory even in the absence of tilt, where
the radius (R) and the pitch (P) of the resulting helical path in the limit of k2R2 � 1 scale as,

R =
(Ω × v)⊥

Ω2
3

∼
v1,2

Ω3
∼

R2

Lc

1[
1 −

(
8b
Lc

)
ln

(
ka
√

e
4π

)]
P =

Ω · v
Ω2

3

∼
v3

Ω3
∼

1
k

1[
2 −

(
3b
Lc

)
ln

(
ka
√

e
4π

)] .
Substituting the parameter values for our bot gives the scaling for the radius and pitch of the
smaller helical trajectory observed in the simulations (Fig. 4B).

In the presence of the tilt, however, the translation velocity and the angular rotation in the per-
pendicular direction will have a large contribution from the torque exerted by the offset weight
due to which the trajectory of the wobble will be set by the angular velocity of the counter-
rotating head. This suggests that there are two time scales in the problem - the first is the inverse
of the angular rotation of the flagellum, which determines the smaller helical trajectory and the
second is the inverse of the angular rotation of the counter rotating head, which determines the
wobble. The calculation of the wobble trajectory requires the translation velocity in the direction
perpendicular to the flagellum’s axis due to the offset weight, which may be obtained by balanc-
ing the torque exerted by the offset weight against the drag on the flagellum (b3/L3

c � 1 and
k2R2 � 1, see appendix),

v1,2 ∼
δmg∆kR
µL2

c

ln
(

ka
√

e
4π

)
[

7
4 −

(
2b
Lc

)
ln

(
ka
√

e
4π

)] (3.5)

Since the pitch angle of the smaller helical trajectory is negligible, it may be assumed that the
velocity along the axis of the smaller helical path is close to v3. In that case, the pitch angle of
the wobble (γ) is given by,

sin γ =
2πv1,2

v3
∼

2πδmg∆k2R
µL2

cω
ln

(
ka
√

e
4π

) [
2 −

(
3b
Lc

)
ln

(
ka
√

e
4π

)]
[

7
4 −

(
2b
Lc

)
ln

(
ka
√

e
4π

)]
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The corresponding radius and pitch of the wobble are (k2R2 � 1),

R ∼
v1,2

ΩH
∼

4δmg∆
µωwave

kb3

RL3
c

[
ln

(
ka
√

e
4π

)]2

[
7
4 −

(
2b
Lc

)
ln

(
ka
√

e
4π

)] (3.6)

P ∼
v3 cos(γ)

ΩH
∼

b3

kR2Lc

ln
(

ka
√

e
4π

)
[
2 −

(
3b
Lc

)
ln

(
ka
√

e
4π

)] , (3.7)

where cos γ is taken to be approximately 1 (cos γ ≈ 0.7 for our experimental measurements). In
the opposite limit of k2R2 � 1, the scaling for radius and pitch of wobble are given by,

R ∼
2δmg∆
µωwave

kb3

RL3
c

[
ln

(
ka
√

e
4π

)]2

[
− 7

3 −
(

2b
Lc

)
ln

(
ka
√

e
4π

)] (3.8)

P ∼
b3k
Lc

ln
(

ka
√

e
4π

)
[
2 −

(
3b
Lc

)
ln

(
ka
√

e
4π

)] , (3.9)

Fig. 4A presents the radius, pitch and the vertical velocity of the bot as a function of the tilt
angle. With increasing tilt angle, the radius of the wobble increases linearly while decreases with
increasing rotation rate (Fig. 4(A1)). The scaling obtained in the limit of k2R2 � 1 broadly reflect
this observation since the tilt angle is proportional to ∆ although the magnitude of the decrease
with rotation rate from simulations is lower than predicted from the scaling arguments. On the
other hand, the pitch is independent of both the rotation rate and tilt angle, which is also captured
by the simple scaling argument. The vertical velocity is equal to v3 cos γ and is independent of
the tilt angle for small tilt angles, in agreement with the simulation results. However, at larger
tilt angles, the simulation results deviate from the small tilt approximation, as expected. This is
because cos γ gradually decreases as the radius of wobble increases.

Fig. 4B determines the effect of changing the number of turns, Nλ = kL/2π, on the wobble
when the radius and the length of the flagellum is kept constant with R/Lc � 1 in all cases. Under
these conditions, increasing the number of turns increases both the contour length and the pitch
angle of the helix. The vertical velocity increases linearly with Nλ at small Nλ but decreases
at large Nλ due to lower thrust at large pitch angles (Fig. 4(B3)). It should however be noted
that the decrease at large Nλ is much steeper than predicted by the RFT since the latter ignores
the hydrodynamic interactions between the segments of the helix (Higdon 1979). Increasing the
contour length of the helix increases the torque exerted by the rotating helix resulting in an
increase of the angular rotation of the counter-rotating head, which in turn reduces the effective
rotation rate of the flagellum. Consequently, the pitch of the wobble decreases with increase in the
number of turns (Fig. 4(B2)). The diameter of the wobble, however, does not change significantly
(Fig. 4(B1)), and this trend is only roughly predicted by the scaling.

The simple scaling also correctly captures the trends with varying Nλ for k2R2 � 1 with con-
stant Lc, L and kR (Fig. 4C). Here, increasing Nλ corresponds to a decreasing R. The decrease in
the vertical velocity and the pitch with Nλ occurs for the same reasons detailed above. However,
the increase in the diameter of the pitch is explained by the fact that increasing Nλ and therefore
decreasing R, reduces the torque exerted by the rotating flagellum, which in turn reduces the
angular rotation of the counter rotating head while the transverse velocity due to the torque from
the offset weight does not change significantly (Fig. 4(C1)).

These results show that by varying the geometric parameters of the flagellum and on inclusion
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:
L

:
6
:::
µm

::
Nλ: :

3
:

:
k

:::
3.14

::::
µm−1

:

:
R

:::
0.24

:::
µm

:
a

::::
0.045

::
µm

:
b

:::
2.5

:::
µm

:::
δm

:::::::
6 × 10−15

::
Kg

:

:
∆

::
2.5

:::
µm

:

:::
ωwave: :::

150
::
Hz

:

:
µ

::::::
8 × 10−4

:::
Pa-s

:::
(at

::::
30◦C)

Table 2.
:::::
Typical

:::::::::
parameters

::
for

::::::::
swimming

:::::::
bacteria.

of a small external torque such as that due to gravity, even when the bot is neutrally buoyant, it can
lead to large variations in both pitch and diameter of the helical trajectory. It is then interesting to
speculate if mass asymmetry could also contribute to the wiggling trajectories

::::::
wobble

:
observed

in bacteria . Since the body of a bacterium head (Darnton et al. 2007; Hyon et al. 2012)
:
.
::
It

::
is

:::
well

:::::
know

::::
that

:::
the

:::::
center

::
of

:::::
mass

::
in

::::::
nearly

:::::::
spherical

:::::::::::
biflagellated

::::::::::::::
Chlamydomonas

::::::::::
oligochloris

:
is
:::::::
located

::::
well

:::
off

:::
the

::::::::
symmetry

::::
axis

::
of

:::
the

::::
cell.

:::::::::
Although

:::
the

:::
cell

:::::
body

::::::
rotates

::::::::::::
approximately

::::::
around

::
its

::::::::
symmetry

::::
axis

:::::
while

:
it
:::::::
swims,

::
the

:::::::::::
gravitational

:::::
torque

::::
due

::
to

:::
the

:::::
off-set

::::::
weight

::::::
causes

:
a
::::::::::
pronounced

::::::
wobble

:::
in

:::
the

::::::::
trajectory

::
of

:::
the

:::::::
bacteria

:
(Pedley & Kessler 1992),

::
a
:::::::::::
phenomenon

:::::::
identical

::
to

:::
that

::::::::
observed

::
in

:::
our

::::
bot.

::::::::
Following

:::
on

::::
these

::::::::::
arguments,

:::
the

::::
body

:::
of

:
a
:::::::::
bacterium

:::::
(such

::
as

::
in

::
E.

::::
coli

:
or

:::
B.

::::::
subtilis

:
) has

loosely distributed components such as nucleoid and ribosomes,
:::
and

:::::
hence the mass need not be

distributed uniformly
:
in

:::
the

:::::
head. Further, since the density of the bacteria is greater than that

of water (1.16 g/cm3 for E. coli) (Godin et al. 2007), the bacterium would experience both a net
external force and a net external torque during its motion. The translational motion generated by
the external force will be small compared to that generated by the thrust of the rotating flagella
but the net external torque may be significant enough to cause a large helical trajectory, similar
to that observed in the bot. However, more detailed information regarding the head and flagella
of bacteria

:::
We

:::
can

:::::::
estimate

:::
the

:::::
pitch

:::
and

:::::
radius

:::
of

::::::
wobble

::::::::
trajectory

:::
for

::
a

::::::
typical

::::::
bacteria

:::::
from

::
the

::::::::::
parameters

:::::
listed

::
in

:::::
table

::
2.

::::
Note

::::
that

:::
the

:::::::
buoyant

:::::
mass

::
of

:::
the

::::::::
bacteria

::
is

::
of

:::::::
O(10−15

::::
Kg)

(Godin et al. 2010)
:::::
while

::
∆

:
is
::::::::

assumed
::
to

:::
be

:::::
equal

::
to

::::
head

::::::
radius.

::::::::::
Substituting

:::::
these

::::::
values

::
in

::
the

:::::::
scalings

::::::::
obtained

::::
using

:::
the

:::::::
resistive

:::::
force

::::::
theory

::
for

::::
both

:::::::
kR � 1

:::
and

:::::::
kR � 1

::::
gives

::::::::
P = O(1

:::
µm)

:
and careful calculations will be needed to explore this further .

:::::::::
R = O(0.1

::::
µm)

:::::::::
suggesting

:::
that

:::::::::
asymmetry

:::
in

::::
mass

::::::::::
distribution

:::::
could

::::::::
contribute

:::
to

:::::::
wobbles

::
in

:::::::::
swimming

::::::::
trajectory.

::::::
These

:::::
values

:::
are

:::
of

:::
the

:::::
same

::::
order

:::
as

:::::
those

::::::::
computed

:::
for

:::::::
wobble

:::
by Hyon et al. (2012)

:::
due

:::
to

:::
the

::::::
off-axis

:::::::::
flagellum,

::::::
P = 2.9

:::
µm

::::
and

::::::
R = 0.1

::::
µm

:::
(see

::::
their

::::::
Figure

::
7)

:::
and

::
is
:::::
close

::
to

:::
the

:::::
lower

::::
limit

::
of

:::
the

:::::
range

::::::::
measured

::
by

:::
the

:::::::
authors,

::::::::::::
P = 8.9 ± 6.0

:::
µm

:::
and

:::::::::::::
R = 0.91 ± 0.81

::::
µm.

:

:::::
While

:::
the

:::::
above

:::::::::
calculation

:::::::
assumes

:::
the

:::::::
bacteria

::
to

:::
be

:::::::::
swimming

:::::
along

:::
the

::::::
gravity

::::::::
direction,

::::::
wobble

:::
will

::::
also

:::
be

:::::::
observed

::
at

:::
all

:::::::::
orientation

:::::
angles

:::::
other

::::
than

:::::
when

:::
the

:::
cell

::
is

:::::::
moving

::::::
exactly

:::::::::::
perpendicular

::
to
::::

the
::::::
gravity

::::::::
direction.

:::::
This

::
is

:::::::
because

:::::
there

::::
will

::::::
always

:::
be

::
a

:::::::::
component

:::
of

::::::
gravity

:::::
acting

::::::
along

:::
the

:::::::
flagellar

::::
axis

::::
that

::::
will

::::
lead

::
to

:::::::
wobble.

::::::::
Further,

:::
the

::::::
scaling

::::::::
suggests

:::
that

:::::
while

::::
pitch

::
is
:::::::::::
independent

::
of

::::::
gravity,

:::
the

::::::
radius

::
is

::::::::::
proportional

::
to

:::
the

:::::::::
component

:::
of

::::::
gravity

:::::
acting

:::::
along

:::
the

:::::::
flagellar

::::
axis.

::::::::::::
Consequently,

:::
the

::::::
radius

::
of

:::
the

::::::::
trajectory

::::::
would

::::
vary

::
as

:::
the

::::
cell

:::::
orients

:::::
itself

::
in

:::::
space

::::
with

::::::
respect

::
to

:::
the

::::::
gravity

::::::::
direction.

::::::
Under

:
a
::::::::::
microscope,

:::
an

:::::::
observer

::::
will

:::::::
therefore

:::
see

:::
the

::::::::::
projections

::
of

:::
the

::::
pitch

:::
and

::::::
radius

:::::
(onto

::
the

::::::
image

::::::
plane),

:::::
which

::::
will

::::
vary

::::
with

::::
cell’s

::::::::::
orientation.

:::::::
Further,

:::
we

::::
note

:::
that

::::
any

:::::::::
asymmetry

::
of

:::::::::::
considerable

:::::::::
magnitude

::::
will

:::::
result

::
in

::
an

::::::
overall

::::::
wobble

::::
and

:::::::
multiple

:::::::
sources

::
of

::::::::::
asymmetry

:::::
could

:::::::
increase

:::
the

::::::::
observed

:::::::
wobble.

:::
We
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:::::::
envision

::::::::
ellipsoidal

:::::
head

:::
and

:::::::
off-axis

::::::::
flagellum

::
to

::::
result

::
in
::::::
further

:::::::
increase

::
in

:::::::
wobble

::::::
beyond

:::
the

::::::::::
mechanisms

:::
we

::::::::
describe.

:
It
::::

will
:::
be

:::::::::
particularly

:::::::::
important

::
in

:::
the

:::::
future

:::
to

:::::::
perform

::::::::::
calculations

:::::::::
accounting

:::
for

:::
the

::::::
various

:::::::
sources

::
of

::::::::::
asymmetry

::
in

:::
the

::::::::
bacterial

::::::::
geometry.

::::::
These

::::::::::
calculations

:::::::::::
accompanied

::
by

:::::::
detailed

:::::::::::
experiments

::
of

::::::::::::
corresponding

:::::::::::
asymmetries

::
in

:::::::::::
macroscopic

::::
bots

::::
will

::::
allow

:::
us

::
to

:::::::::
understand

:::
all

:::::
factors

::::
that

::::::::
contribute

:::
to

::::::::
wobbling

:::::::::
trajectories

::
of

::
a

:::::::::
bacterium.

The good agreement between the predictions of SBT and the experiments show that the ap-
proximations that lead to SBT formulation, namely, representing the force generated by a rotat-
ing filament with a distribution of stokeslets and doublets along center of the flagellum captures
closely all details of the flow. Further, our work shows that errors due to the absence of the cor-
rected Green’s function for the stokeslets are small. This suggest that the current SBT model is
an excellent candidate for investigating collective motion of bacteria compared to the commonly
used resistive force theory, which is prone to large errors especially at large cell number densities
due to the improper accounting of hydrodynamic interactions.

4. Conclusions
In this study, we have built a working model of a bacterium and observed its detailed motion

in a viscous liquid.
::::::
These

:::::
details

::::::
cannot

:::
be

::::::::::::
simultaneously

::::::::
observed

:::
for

::
a

:::
real

:::::::::
bacterium

:::::
under

:
a
::::::::::
microscope. We show that a small asymmetry in the mass distribution in the head can lead to

helical trajectories with large pitch and radius, which are reminiscent of the wiggling trajectories
observed for swimming bacteria. The detailed motion agrees well with the predictions from
slender body theory that accounts for the asymmetric mass distribution in the head. The observed
trajectory is comprised of two helical trajectories of different length scales - a large one caused
by the asymmetric mass distribution and set by the head rotation rate and a smaller one caused by
the rotating flagellum and set by its rotation rate. These results show that small mass asymmetries
in real bacteria could lead to large helical trajectories similar to the observed wiggling trajectories
in swimming bacteria.

The authors are grateful to Professor Ashok Sangani for providing his SBT code with the
modified Green’s function, which was used to estimate the magnitude of error in the absence
of the correction. Financial support from the Department of Science and Technology, India
(SB/S3/CE/089/2013) and Department of Biotechnology, India (BT/PR7712/BRB/10/1229/2013)
is acknowledged. MST also acknowledges support from the Swaranajayanti Fellowship (DST/SJF
/ETA-01/2010-11).

REFERENCES

Berg, H.C. 2004 E. coli in Motion. Springer, New York.
Chwang, A. T. & Wu, T. Y. 1971 A note on the helical movement of micro-organisms. Proc. R. Soc. B. 178,

327.
Cortez, R. 2001 The method of regularized stokeslets. SIAM J. Sci. Comput. 23 (4), 1204–1225.
Cortez, R, Fauci, L & Medovikov, A 2005 The method of regularized stokeslets in three dimensions: Anal-

ysis, validation, and application to helical swimming. Phys. Fluids 031504.
Darnton, N.C., Turner, L., Rojevsky, S. & Berg, H.C. 2007 On torque and tumbling in swimming Es-

cherichia coli. J. Bacteriol. 189 (5), 1756–1764.
Dillon, R.H., Fauci, L.J. & Yang, X. 2001 Sperm motility and multiciliary beating: An integrative mechan-

ical model. Computers & Mathematics with Applications 23 (4), 1204–1225.
Godin, M., Bryan, A. K., Burg, T. P., Babcock, K. & Manalis, S. R. 2007 Measuring the mass, density, and

size of particles and cells using a suspended microchannel resonator. App Phys Lett 91 (12), 123121.
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Appendix A. Results from the resistive-force theory of Keller & Rubinow (1976)
(KR)

A.1. Scalings in the absence of tilt from KR

To obtain approximate scalings for the pitch, radius and vertical component of translation ve-
locity in the presence of the tilt, we utilize the results of KR derived using the resistive force
theory, which are strictly applicable in the absence of the tilt. Their analysis predicts all compo-
nents of velocity and angular rotation of the head and the flagellum (see equations (35)-(39) in
KR). These are reproduced below. The velocity component along the axis of the flagellum in the
lab-fixed coordinate system is given by,

vα=0
3

c
=

k2R2

D
4b3

L3
c

ln
(

ka
√

e
4π

)
(A 1)

where,

D =
R2

L2
c

[
2(1 + k2R2) − (2 + k2R2)

(
3b
Lc

)
ln

(
ka
√

e
4π

)]
−(

4b3

L3
c

)
ln

(
ka
√

e
4π

) [
1 + 2k2R2 − (1 + k2R2)

(
3b
Lc

)
ln

(
ka
√

e
4π

)]
,

k = 2π/λ and c = ωwave/k.

The superscript, α = 0, emphasizes the absence of tilt. The two perpendicular components are
given by,

vα=0
1

c
=

16
D

Rb3

L4
c

ln
(

ka
√

e
4π

) (
1 + k2R2

)3/2
(2 + cos ζ)N[

4 + 3k2R2 − 24(1 + k2R2)
b
Lc

ln
(

ka
√

e
4π

)] , and (A 2)

vα=0
2

c
=

(
sin ζ

2 + cos ζ

)
Vα=0

1

c
(A 3)

where, ζ = kLc cos β, cos β = 1/
√

1 + k2R2 and β is the helix angle of the flagellum. The corre-
sponding angular velocities of the head and the tail along the axis of the flagellum are,

Ωα=0
3,H

ωwave
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1
D
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c

[
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(A 4)

Ωα=0
3

ωwave
=

1
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e
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) [
1 + 2k2R2 − (1 + k2R2)

(
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ln
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e
4π

)]
(A 5)

A.2. Scaling for transverse velocity in the presence of tilt

In order to obtain the approximate scaling for the transverse velocity induced by the off-set
weight, we start with the angular momentum balance in the transverse direction obtained by KR
(4th of equation (34) in KR) and introduce on the right hand side, the approximate expression
for the torque due to the off-set weight,
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4
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)
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2
3

cos2 β

(
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kL2
c

(2 − k2R2 cos2 β)Ω3Lc ∼
δmg∆
2πµL2

c
ln

(
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e
4π

)
(A 6)
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The momentum balance equation in the same transverse direction is given by (2nd of equation
(34)),[

2 −
k2R2

2
cos2 β − 3

b
L

ln
(

ka
√

e
4π

)]
v2 −

R
Lc

cos β sin ζv3 − cos β
(
1 −

k2R2

4
cos2 β

)
Ω1Lc

+
R
ζLc

(2 − k2R2 cos2 β) sin ζΩ3Lc = 0(A 7)

Since we expect the transverse velocity during a wobble to be dominated by the torque exerted
by the off-set weight, we drop the terms involving v3 and Ω3 while eliminating Ω1 from the above
two equations,

v2 ∼
δmg∆

√
1 + k2R2

µL2
c

ln
(
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e
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)
[
−

7
3

(
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ln
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√

e
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)] (A 8)

The velocity in the other transverse direction (v1) is also of the same order of magnitude.
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