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Abstract

This supplementary material contains the proofs of Lemma 3.4, 3.8 and 4.4 of
the paper.

First of all, we will follow the basic approach of [2, Lemma 6.1] to prove Lemma 3.4,
which compares the sharp counting function with its delta approximation smoothed
on the scale η̃.

Proof of Lemma 3.4. Recall (3.40) of the paper, we have η̃ � t � EU − E− ≤
7
2N
−2/3+ε. Furthermore, for x ∈ R, we have

|XE(x)−XE ∗ ϑη̃(x)| =
∣∣∣∣(∫

R
XE(x)−

∫ EU−x

E−−x
)ϑη̃(y)dy

∣∣∣∣ . (S1)

Denote d(x) := |x−E−|+ η̃ and dU (x) := |x−EU |+ η̃, we need the following bound
to estimate (S1).

Lemma 0.1. There exists some constant C > 0, such that

|XE(x)−XE ∗ ϑη̃(x)| ≤ Cη̃
[
EU − E−

dU (x)d(x)
+

XE(x)

(dU (x) + d(x))

]
.

Proof. When x > EU , we have

|XE(x)−XE ∗ ϑη̃(x)| = η̃

∣∣∣∣∣
∫ x−E−

x−EU

1

π(y2 + η̃2)
dy

∣∣∣∣∣ =
η̃

π

[∫ x−E−

x−EU

1

(y + η̃)2
+

2η̃y

(y2 + η̃2)(y + η̃)2
dy

]

≤ Cη̃ EU − E
−

dU (x)d(x)
.

Similarly, we can prove when x < E−. When E− ≤ x ≤ EU , we have

|XE(x)−XE ∗ ϑη̃(x)| ≤ Cη̃

dU (x)
+

Cη̃

d(x)
= Cη̃

[
EU − E−

dU (x)d(x)
+

2η̃

dU (x)d(x)

]
,

where we use (3.12) of the paper. Therefore, it suffices to show that

dU (x)d(x) ≥ 1

4
η̃(dU (x) + d(x)) =

1

4
η̃(EU − E− + 2η̃). (S2)
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2 Xiucai Ding

An elementary calculation yields that dU (x)d(x) ≥ η̃(EU − E− + η̃), which implies
(S2). Hence, we conclude our proof. �

For the right-hand side of (S1), when min{d(x), dU (x)} ≥ t, it will be bounded
by O(N−3ε0+ε); when min{d(x), dU (x)} ≤ t, then we must have max{d(x), dU (x)} ≥
(EU −E−)/2, therefore, it will be bounded by a constant c as min{d(x), dU (x)} ≥ η̃.
Therefore, by using the above results for the diagonal elements of Q1, we have

|TrXE(Q1)− TrXE ∗ ϑη̃(Q1)| ≤ C
[
Tr f(Q1) + cN (E− − t, E− + t) +N−3ε0+εN (E− + t, EU − t)

+cN (EU − t, EU + t) +N−3ε0+εN (EU + t, a2k−2) +

M∑
i=1

XE ∗ ϑη̃((Q1)ii)1((Q1)ii > a2k−2)

]
,

(S3)

where f is defined as

f(x) :=
η̃(EU − E−)

dU (x)d(x)
1(x ≤ E− − t).

As we assume that ε < ε0, by Assumption 1.2, (2.20) of the paper and the fact ε1 < ε,
with 1−N−D1 probability, we have

N (EU − t, EU + t) = 0, N (EU + t, a2k−2) = 0, N (E− + t, EU − t) ≤ N ε0 .

On the other hand, when (Q1)ii > a2k−2, by Assumption 1.2 of the paper, we have

XE ∗ ϑη̃((Q1)ii) = η̃

∫ (Q1)ii−E−

(Q1)ii−EU

1

y2 + η̃2
dy ≤ η̃

∫ (Q1)ii−E−

(Q1)ii−EU

1

y2
dy ≤ 7

2τ2
N−4/3+ε−9ε0 ,

where τ is defined in Assumption 1.2 of the paper. Hence, we have
∑M

i=1XE ∗
ϑη̃((Q1)ii)1((Q1)ii > a2k−2)) ≤ CN−1/3+ε−9ε0 . Therefore, (S3) can be bounded in
the following way

|TrXE(Q1)− TrXE ∗ ϑη̃(Q1)| ≤ C(Tr f(Q1) +N (E− − t, E− + t) +N−2ε0).

To finish our proof, we need to show that with 1−N−D1 probability, Tr f(Q1) ≤ N−2ε0 .
By (6.16) of [2], we have

f(x)

η̃(EU − E−)
≤ C(g ∗ ϑt)(E− − x),

where g(y) is defined as g(y) := 1
y2+t2 . Recall (2.6) and (3.34) of the paper. We have

1

N
Trϑt(Q1 − E−) =

1

π
Imm2(E− + it).

Hence, we can obtain that

Tr f(Q1) ≤ CNη̃(EU − E−)

∫
R

1

y2 + t2
Imm2(E− − y + it)dy

≤ CN1/3+εη̃

∫
R

1

y2 + t2
[Imm(E− − y + it) +

N ε1

Nt
]dy, (S4)
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where we use (2.16) of the paper. It is easy to check that

CN−1/3+ε+ε1−9ε0

∫
R

1

y2 + t2
1

Nt
dy ≤ CN−4/3+ε+ε1−9ε0t−2

∫
R

t

t2 + y2
dy ≤ N−2ε0 .

(S5)
Next, we will use (3.42) of the paper to estimate (S4). When E− − y ≥ a2k−1, we
have

Imm(E− − y + it) ≤ C
√
t+ E− − y − a2k−1.

Denote A := {E− − y − a2k−1 ≥ t}. Then we have∫
A

Imm(E− − y + it)

y2 + t2
dy ≤ C

∫
R

|y|1/2 + |E− − a2k−1|1/2

y2 + t2
dy ≤ C(

1

t1/2
+
|E− − a2k−1|1/2

y2 + t2
),

(S6)∫
Ac

Imm(E− − y + it)

y2 + t2
dy ≤ Ct−1/2. (S7)

The other case can be treated similarly. Therefore, by (S4), (S5), (S6) and (S7),
we have proved Tr f(Q1) ≤ N−2ε0 holds true with 1 −N−D1 probability. Hence, we
conclude our proof. �

Next we will follow the approach of [3, Lemma 3.6] to finish the proof of Lemma
3.8. A key observation is that when s = 0, we will have a smaller bound but the total
number of such terms are O(N) for x(E) and O(N2) for y(E). And when s = 1, we
have a larger bound but the number of such terms are O(1). We need to analyze the
items with s = 0, 1 separately.

Proof of Lemma 3.8. Condition on the variable s = 0, 1, we introduce the following
decomposition

xs(E) :=
Nη

π

M+N∑
k=M+1, and 6=µ,ν

Xµν,k(E+iη)1(s = 1 (({µ, ν} ∩ {µ1} 6= ∅) ∪ ({k = µ1}))),

ys(E) :=
η̃

π

∫ EU

E−

∑
k

∑
β 6=k

Xββ,k(E + iη̃)dE1(s = 1(({β = µ1}) ∪ ({k = µ1}))).

∆xs,∆ys can be defined in the same fashion. Similar to the discussion of (3.64) of the
paper, for any E-dependent variable f ≡ f(E) independent of the (i, µ1)-th entry of
XG, there exist two random variables A2, A3, which depend on the randomness only
through O, f and the first two moments of XG

iµ1
, for any event Ω, with 1 − N−D1

probability, we have∣∣∣∣∫
I
Eγ∆xs(E)f(E)dE −A2

∣∣∣∣1(Ω) ≤ ||f1(Ω)||∞N−11/6+Cε0N−2s/3+t,

|Eγ∆ys(E)−A3| ≤ N−11/6+Cε0N−2s/3.
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In our application, f is usually a function of the entries of R (recall R is independent
of V ). Next, we use

θ[

∫
I
xSq(yS)dE] = θ[

∫
I
(xR + ∆x0 + ∆x1)q(yR + ∆y0 + ∆y1)dE]. (S8)

By (3.60), (3.61) and (3.62) of the paper, it is easy to check that, with 1 − N−D1

probability, we have∫
I
|∆xs(E)|dE ≤ N−5/6+Cε0N−2s/3+t, |∆ys(E)| ≤ N−5/6+Cε0N−2s/3, (S9)∫

I
|x(E)|dE ≤ NCε0 , |y(E)| ≤ NCε0 . (S10)

By (S8) and (S9), with 1−N−D1 probability, we have

θ[

∫
I
xSq(yS)dE] = θ[

∫
I
xS(q(yR) + q′(yR)(∆y0 + ∆y1) + q′′(yR)(∆y0)2)dE] + o(N−2).

Similarly, we have (see (3.44) of [3])

θ[

∫
I
xSq(yS)dE]− θ[

∫
I
xRq(yR)dE] = θ′[

∫
I
xRq(yR)dE]

× [

∫
I

(
(∆x0 + ∆x1)q(yR) + xRq′(yR)(∆y0 + ∆y1) + ∆x0q

′(yR)∆y0 + xRq′′(yR)(∆y0)2
)
dE]

+
1

2
θ′′[

∫
I
xRq(yR)dE][

∫
I
(∆x0q(y

R) + xRq′(yR)∆y0)dE]2 + o(N−2+t). (S11)

Now we start dealing with the individual terms on the right-hand side of (S11). Firstly,
we consider the terms containing ∆x1, ∆y1. Similar to (3.64) of the paper, we can
find a random variable A4, which depends on randomness only through O and the
first two moments of XG

iµ1
, such that with 1−N−D1 probability,∣∣∣∣Eγ ∫

I
(∆x1q(y

R) + xRq′(yR)∆y1)dE −A4

∣∣∣∣ = o(N−2+t).

Hence, we only need to focus on ∆x0, ∆y0. We first observe that

∆x0(E) = 1(t = 0)
Nη

π

∑
k 6=µ,ν,µ1

∆Xµν,k(z),

∆y0(E) =
η̃

π

∫ EU

E−

∑
k 6=µ1

∑
β 6=k,µ1

∆Xββ,k(E + iη̃)dE.

Denote ∆x
(k)
0 (E) by the summations of the terms in ∆x0(E) containing k items of

XG
iµ1

. By (3.46), (3.60) and (3.61) of the paper, it is easy to check that with 1−N−D1

probability,

|∆x(3)
0 | ≤ N

−7/6+Cε0 , |∆y(3)
0 | ≤ N

−11/6+Cε0 . (S12)
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We now decompose ∆Xµν,k into three parts indexed by the number of XG
iµ1

they

contain. By (3.46), (3.60), (3.61) of the paper and (S12), with 1−N−D1 probability,
we have

∆Xµν,k = ∆X
(1)
µν,k + ∆X

(2)
µν,k + ∆X

(3)
µν,k +O(N−3+Cε0),

∆x0 = ∆x
(1)
0 + ∆x

(2)
0 + ∆x

(3)
0 +O(N−5/3+Cε0), (S13)

∆y0 = ∆y
(1)
0 + ∆y

(2)
0 + ∆y

(3)
0 +O(N−7/3+Cε0). (S14)

Inserting (S13) and (S14) into (S11), similar to the discussion of (3.64) of the paper,
we can find a random variable A5 depending on the randomness only through O and
the first two moments of XG

iµ1
, such that with 1−N−D1 probability,

Eγθ[
∫
I
xSq(yS)dE]− Eγθ[

∫
I
xRq(yR)dE]

= Eγθ′[
∫
I
xRq(yR)dE][

∫
I

∆x
(3)
0 q(yR) + xRq′(yR)∆y

(3)
0 dE] +A4 +A5 + o(N−2+t).

Lemma 3.8 will be proved if we can show

Eθ′[
∫
I
xRq(yR)dE][

∫
I

∆x
(3)
0 q(yR) + xRq′(yR)∆y

(3)
0 dE] = o(N−2).

Due to the similarity, we shall prove

Eθ′[
∫
I
xRq(yR)dE][

∫
I

∆x
(3)
0 q(yR)dE] = o(N−2),

the other term follows. By (3.3) of the paper and (S10), with 1−N−D1 probability,

we have |BR| :=
∣∣θ′[∫I xRq(yR)dE]

∣∣ ≤ NCε0 . Similar to (3.66) of the paper, ∆x
(3)
0 is

a finite sum of terms of the form

1(t = 0)Nη
∑

k 6=µ,ν,µ1

Rµk(σi)
3/2(XG

iµ1
)3z3/2Rνa1

Rb1a2
Rb2a3

Rb3k. (S15)

Inserting (S15) into
∫
I ∆x

(3)
0 q(yR)dE, for some constant C > 0, we have∣∣∣∣Eθ′[∫

I
xRq(yR)dE][

∫
I

∆x
(3)
0 q(yR)dE]

∣∣∣∣ ≤ N−5/6+Cε0 max
k 6=µ,ν,µ1

sup
E∈I

∣∣EBRRµkRνµ1
Rikq(y

R)
∣∣+ o(N−2).

(S16)

Again by (3.60), (3.61) and (3.62) of the paper, it is easy to check that with 1−N−D1

probability, for some constant C > 0, we have

|RµkRνµ1
RikB

Rq(yR)− SµkSνµ1
SikB

Sq(yS)| ≤ N−4/3+Cε0 .

Therefore, if we can show

|ESµkSνµ1
SikB

Sq(yS)| ≤ N−4/3+Cε0 , (S17)
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then by (S16), we finish proving (). The rest leaves to prove (S17). Recall Definition
2.3 and (3.57) of the paper, by [4, Lemma 3.2 and 3.3](or [1, Lemma A.2]), we have
the following resolvent identities,

S(µ1)
µν = Sµν −

Sµµ1
Sµ1ν

Sµ1µ1

, µ, ν 6= µ1, (S18)

Sµν = zSµµS
(µ)
νν (Y ∗γ−1S

(µν)Yγ−1)µν , µ 6= ν. (S19)

By (3.61), (3.62) of the paper and (S18), it is easy to check that (see (3.72) of [3]),

|SµkSνµ1
SikB

Sq(yS)− S(µ1)
µk Sνµ1

S
(µ1)
ik (BS)(µ1)q((yS)(µ1))| ≤ N−4/3+Cε0 . (S20)

Moreover, by (3.73) of [3], we have

S
(µ1)
µk Sνµ1

S
(µ1)
ik (BS)(µ1)q((yS)(µ1)) = (SµkSikB

Sq(yS))(µ1)Sνµ1
. (S21)

As t = 0, by (S19), we have

Sνµ1
= zm(z)S(ν)

µ1µ1

∑
p,q

S(νµ1)
pq (Y ∗γ−1)νp(Yγ−1)qµ1

+z(Sνν−m(z))S(ν)
µ1µ1

∑
p,q

S(νµ1)
pq (Y ∗γ−1)νp(Yγ−1)qµ1

.

(S22)
The conditional expectation Eγ applied to the first term of (S22) vanishes; hence its
contribution to the expectation of (S21) will vanish. By (2.19) of the paper, with
1−N−D1 probability, we have

|Sνν −m(z)| ≤ N−1/3+Cε0 . (S23)

By the large deviation bound [4, Lemma 3.6], with 1−N−D1 probability, we have∣∣∣∣∣∑
p,q

S(νµ1)
pq (Y ∗γ−1)νp(Yγ−1)qµ1

∣∣∣∣∣ ≤ N ε1
(
∑

p,q |S
(νµ1)
pq |2)1/2

N
. (S24)

By (2.19) of the paper and (S24), with 1−N−D1 probability, we have∣∣∣∣∣∑
p,q

S(νµ1)
pq (Y ∗γ−1)νp(Yγ−1)qµ1

∣∣∣∣∣ ≤ N−1/3+Cε0 . (S25)

Therefore, inserting (S23) and (S25) into (S21), by (2.19) of the paper, we have

|ES(µ1)
µk Sνµ1

S
(µ1)
ik (BS)(µ1)q((yS)(µ1))| ≤ N−4/3+Cε0 .

Combine with (S20), we conclude our proof. �
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Proof of Lemma 4.4. It is easy to check that with 1−N−D1 probability, (3.39) of
the paper still holds true. Therefore, it remains to prove the following result

EV θ[
N

π

∫
I
G̃µν(E+iη)q(TrXE(Q1))]−EV θ[N

π

∫
I
G̃µν(E+iη)q(Tr fE(Q1))dE] = o(1).

(S26)
We first observe that for any x ∈ R, we have

|XE(x)− fE(x)| =

{
0, x ∈ [E−, EU ] ∪ (−∞, E− − ηd) ∪ (EU + ηd,+∞);

|fE(x)|, x ∈ [E− − ηd, E−) ∪ (EU , EU + ηd].

Therefore, we have

|TrXE(Q1)− Tr fE(Q1)| ≤ max
x
|fE(x)|

(
N (E− − ηd, E−) +N (EU , EU + ηd)

)
.

By Lemma 2.3 of the paper, the definition of ηd and a similar argument to (3.44) of
the paper, we can finish the proof of (S26). �
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